## PRODUCT SPECIFICATION

## AQUASPRING ${ }^{T M}$ C900 IB PVC PIPE <br> Gasketed Integral Bell

Our AquaSpring ${ }^{\text {mi }}$ C900 Gasketed Integral Bell PVC Pipe product line is manufactured to meet the needs of modern municipal water, wastewater, and reclaimed water systems. With top quality raw materials and modern processing technology, AquaSpring C900 pipe meets all industry standards in addition to our own rigorous quality control requirements.

AquaSpring C900 pipe utilizes Rieber style gaskets throughout the entire product offering to create a leak-free joint.

| SHORT FORM SPECIFICATION |  |  |
| :--- | :--- | :--- |
| Pipe Standard: | AWWA C900-16, CSA B137.3 |  |


| APPLICATIONS | POTABLE WATER | WASTEWATER | RECLAIMED WATER |
| :--- | :---: | :---: | :---: |
| Color: | Blue | Green | Purple |
|  | NSF 14, NSF 61 |  |  |
|  | CSA B137.3 |  |  |
| Certifications:* | UL 1285, ULC |  |  |
|  | FM 1612** | CSA B137.3 | CSA B137.3 |
|  | BNQ 3624-250, |  |  |
|  | BNQ 3660-950 |  |  |



Pipe \& Fittings

## PRODUCT SPECIFICATION

## AQUASPRING ${ }^{\text {TM }}$ C900 IB PVC PIPE

Gasketed Integral Bell


AquASPRING"' C900 IB PIPE DIMENSIONS \& PERFORMANCE

| Nom. Size | Outside Diameter (OD) | DR | Pressure Class psi [kPa] | Min. Wall Thickness (T) | Internal Diameter (ID) | Approx. Bell Diameter (BD) | Bell Depth <br> (C) | Target $1^{\text {st }}$ Insertion Mark (L1) (Note 7) | Target $2^{\text {nd }}$ Insertion Mark (L2) (Note 7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 4^{4 \prime} \\ {[100 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 4.800 \\ & {[121.9]} \end{aligned}$ | 25 | 165 [1150] | 0.192 [4.88] | 4.416 [112.1] | $\begin{aligned} & 6.366 \\ & {[161.7]} \end{aligned}$ | $\begin{gathered} 5.375 / 5.0 \\ {[136.5 / 127]} \end{gathered}$ | $\begin{aligned} & 3.375 / 4.25 \\ & {[85.7 / 108]} \end{aligned}$ | 4.375/No L2 <br> [111.1/] |
|  |  | 18 | 235 [1620] | 0.267 [6.78] | 4.266 [108.3] |  |  |  |  |
|  |  | 14 | 305 [2130] | 0.343 [8.70] | 4.114 [104.5] |  |  |  |  |
| $\begin{gathered} 6^{6} \\ {[150 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} 6.900 \\ {[175.3]} \end{gathered}$ | 25 | 165 [1150] | 0.276 [7.00] | 6.348 [161.3] | $\begin{gathered} 8.888 \\ {[225.8]} \end{gathered}$ | $\begin{gathered} 6.125 / 6.0 \\ {[155.6 / 152.4]} \end{gathered}$ | $\begin{gathered} \text { 4.625/4.5 } \\ {[117.5 / 114.3]} \end{gathered}$ | $\begin{gathered} 5.625 / 5.5 \\ {[142.9 / 139.7]} \end{gathered}$ |
|  |  | 18 | 235 [1620] | 0.383 [9.72] | 6.134 [155.9] |  |  |  |  |
|  |  | 14 | 305 [2130] | 0.493 [12.50] | 5.914 [150.3] |  |  |  |  |
| $\begin{gathered} 8^{\prime \prime} \\ {[200 \mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} 9.050 \\ {[229.9]} \end{gathered}$ | 25 | 165 [1150] | 0.362 [9.20] | 8.326 [211.5] | $\begin{aligned} & 11.501 \\ & \text { [292.1] } \end{aligned}$ | $\begin{gathered} 7.375 / 7.0 \\ {[187.3 / 177.8]} \end{gathered}$ | $\begin{gathered} \text { 5.625/5.0 } \\ {[142.9 / 127]} \end{gathered}$ | $\begin{gathered} \text { 6.625/6.0 } \\ {[168.3 / 152.4]} \end{gathered}$ |
|  |  | 18 | 235 [1620] | 0.503 [12.80] | 8.044 [204.3] |  |  |  |  |
|  |  | 14 | 305 [2130] | 0.646 [16.40] | 7.758 [197.1] |  |  |  |  |
| $\begin{gathered} 10 " \\ {[250 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 11.100 \\ & {[281.9]} \end{aligned}$ | 25 | 165 [1150] | 0.444 [11.30] | 10.212 [259.3] | $\begin{aligned} & 14.073 \\ & {[357.5]} \end{aligned}$ | $\begin{gathered} 7.625 / 7.5 \\ {[193.7 / 190.5]} \end{gathered}$ | $\begin{gathered} \text { 6.125/5.75 } \\ {[155.6 / 146.1]} \end{gathered}$ | 7.125/6.75[181/171.5] |
|  |  | 18 | 235 [1620] | 0.617 [15.70] | 9.866 [250.3] |  |  |  |  |
|  |  | 14 | 305 [2130] | 0.793 [20.10] | 9.514 [241.7] |  |  |  |  |
| $\begin{gathered} 12 " \\ {[300 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 13.200 \\ & {[335.3]} \end{aligned}$ | 25 | 165 [1150] | 0.528 [13.40] | 12.144 [308.5] | $\begin{aligned} & 16.571 \\ & {[420.9]} \end{aligned}$ | $\begin{aligned} & 8.625 / 8.375 \\ & {[219.1 / 212.7]} \end{aligned}$ | $\begin{gathered} \text { 6.875/6.75 } \\ {[174.6 / 171.5]} \end{gathered}$ | $\begin{gathered} 7.875 / 7.75 \\ {[200 / 196.9]} \end{gathered}$ |
|  |  | 18 | 235 [1620] | 0.733 [18.60] | 11.734 [298.1] |  |  |  |  |
|  |  | 14 | 305 [2130] | 0.943 [23.90] | 11.314 [287.5] |  |  |  |  |
| $\begin{gathered} 14 " \\ {[350 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 15.300 \\ & {[388.6]} \end{aligned}$ | 41 | 100 [690] | 0.373 [9.47] | 14.554 [369.7] | $\begin{aligned} & 18.705 \\ & {[475.1]} \end{aligned}$ | $\begin{aligned} & 9.375 / 11.375 \\ & {[238.1 / 288.9]} \end{aligned}$ | $\begin{gathered} 7.5 / 8.75 \\ {[190.5 / 222.3]} \end{gathered}$ | $\begin{gathered} 8.5 / 10.75 \\ {[215.9 / 273.1]} \end{gathered}$ |
|  |  | 32.5 | 125 [860] | 0.471 [12.0] | 14.358 [364.7] |  |  |  |  |
|  |  | 25 | 165 [1150] | 0.612 [15.6] | 14.076 [357.5] |  |  |  |  |
|  |  | 18 | 235 [1620] | 0.850 [21.6] | 13.600 [345.4] |  |  |  |  |
| $\begin{gathered} 16 \mathrm{k} \\ {[400 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 17.400 \\ & {[442.0]} \end{aligned}$ | 41 | 100 [690] | 0.424 [10.77] | 16.552 [420.4] | $\begin{aligned} & 21.251 \\ & {[539.8]} \end{aligned}$ | $\begin{gathered} 10.5 / 12.5 \\ {[266.7 / 317.5]} \end{gathered}$ | $\begin{gathered} 8.5 / 9.75 \\ {[215.9 / 247.7]} \end{gathered}$ | $\begin{gathered} 9.5 / 11.75 \\ {[241.3 / 298.5]} \end{gathered}$ |
|  |  | 32.5 | 125 [860] | 0.535 [13.6] | 16.330 [414.8] |  |  |  |  |
|  |  | 25 | 165 [1150] | 0.696 [17.7] | 16.008 [406.6] |  |  |  |  |
|  |  | 18 | 235 [1620] | 0.967 [24.6] | 15.466 [392.8] |  |  |  |  |

Notes:

1. These dimensions are for estimating purposes only. All dimensions not in brackets are in inches unless otherwise specified.
2. Dimensions in brackets are in millimeters unless otherwise specified.
3. $D R=$ Dimension Ratio
4. AWWA and CSA Pressure Class @ $73^{\circ} \mathrm{F}\left[23^{\circ} \mathrm{C}\right]$ which includes a $2: 1$ safety factor.
5. Internal diameter calculated using nominal outside diameter and minimum wall thickness.
6. Dimension given for Approx. Bell Diameter (BD) is for highest pressure class.
7. For bell depths and insertion marks shown as $x x / x x$, this represents bell depths and insertion marks for pipe made in Woodbridge, ON/Abbotsford, $B C$

## PRODUCT SPECIFICATION

## AQUASPRING ${ }^{T M}$ C900 IB PVC PIPE <br> Gasketed Integral Bell

| AQuASPRING"' ${ }^{\text {c }}$ C900 IB PIPE DIMENSIONS \& PERFORMANCE |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nom. Size | Outside Diameter (OD) | DR | Pressure Class psi [kPa] | Min. Wall Thickness (T) | Internal Diameter (ID) | Approx. Bell Diameter (BD) | Bell Depth <br> (C) | Target $1^{\text {st }}$ Insertion Mark (Li) (Note 7) | Target $2^{\text {nd }}$ Insertion Mark (L2) (Note 7) |
| $\begin{gathered} 18 " \\ {[450 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 19.500 \\ & {[495.3]} \end{aligned}$ | 41 | 100 [690] | 0.476 [12.09] | 18.548 [471.1] | $\begin{aligned} & 23.724 \\ & {[602.6]} \end{aligned}$ | $\begin{gathered} 10.75 / 12.5 \\ {[273.1 / 317.5]} \end{gathered}$ | $\begin{gathered} 8.875 / 9.75 \\ {[225.4 / 247.7]} \end{gathered}$ | $\begin{gathered} 9.875 / 11.75 \\ {[250.8 / 298.5]} \end{gathered}$ |
|  |  | 32.5 | 125 [860] | 0.600 [15.2] | 18.300 [464.8] |  |  |  |  |
|  |  | 25 | 165 [1150] | 0.780 [19.8] | 17.940 [455.7] |  |  |  |  |
|  |  | 18 | 235 [1620] | 1.083 [27.5] | 17.334 [440.3] |  |  |  |  |
| $\begin{gathered} 20 " \\ {[500 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 21.600 \\ & {[548.6]} \end{aligned}$ | 32.5 | 125 [860] | 0.665 [16.9] | 20.270 [514.9] | $\begin{aligned} & 26.259 \\ & {[667.0]} \end{aligned}$ | $\begin{aligned} & 11.375 \\ & {[288.9]} \end{aligned}$ | $\begin{gathered} 9.5 \\ {[241.3]} \end{gathered}$ | $\begin{gathered} 10.5 \\ {[266.7]} \end{gathered}$ |
|  |  | 25 | 165 [1150] | 0.864 [22.0] | 19.872 [504.7] |  |  |  |  |
|  |  | 18 | 235 [1620] | 1.200 [30.5] | 19.200 [487.7] |  |  |  |  |
| $\begin{gathered} 24 " \\ {[600 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 25.800 \\ & {[655.3]} \end{aligned}$ | 32.5 | 125 [860] | 0.794 [20.2] | 24.212 [615.0] | $\begin{aligned} & 31.280 \\ & {[794.5]} \end{aligned}$ | $\begin{aligned} & 13.375 \\ & {[339.7]} \end{aligned}$ | $\begin{aligned} & 11.500 \\ & {[292.1]} \end{aligned}$ | $\begin{aligned} & 12.500 \\ & {[317.5]} \end{aligned}$ |
|  |  | 25 | 165 [1150] | 1.032 [26.2] | 23.736 [602.9] |  |  |  |  |
|  |  | 18 | 235 [1620] | 1.433 [36.4] | 22.934 [582.5] |  |  |  |  |
| $\begin{gathered} 30 " \\ {[750 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 32.000 \\ & {[812.8]} \end{aligned}$ | 51 | 80 [550] | 0.627 [15.90] | 30.746 [781] | $\begin{aligned} & 38.476 \\ & {[977.3]} \end{aligned}$ | $\begin{aligned} & 15.125 \\ & {[384.2]} \end{aligned}$ | $\begin{aligned} & 13.625 \\ & {[346.1]} \end{aligned}$ | $\begin{aligned} & 14.625 \\ & {[371.5]} \end{aligned}$ |
|  |  | 41 | 100 [690] | 0.780 [19.80] | 30.440 [741.4] |  |  |  |  |
|  |  | 32.5 | 125 [860] | 0.985 [25.00] | 30.030 [762.8] |  |  |  |  |
|  |  | 25 | 165 [1150] | 1.280 [32.50] | 29.440 [747.8] |  |  |  |  |
|  |  | 18 | 235 [1620] | 1.778 [45.20] | 28.444 [722.4] |  |  |  |  |
| $\begin{gathered} 36 " \\ {[900 \mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & 38.300 \\ & {[972.8]} \end{aligned}$ | 51 | 80 [550] | 0.751 [19.10] | 36.798 [934.6] | $\begin{gathered} 44.305 \\ {[1125.3]} \end{gathered}$ | $\begin{aligned} & 19.125 \\ & {[485.8]} \end{aligned}$ | $\begin{aligned} & 17.625 \\ & {[447.7]} \end{aligned}$ | $\begin{aligned} & 18.625 \\ & {[473.1]} \end{aligned}$ |
|  |  | 41 | 100 [690] | 0.934 [23.70] | 36.432 [925.4] |  |  |  |  |
|  |  | 32.5 | 125 [860] | 1.178 [29.90] | 35.944 [913.0] |  |  |  |  |
|  |  | 25 | 165 [1150] | 1.532 [38.90] | 35.236 [895.0] |  |  |  |  |

## Notes:

1. These dimensions are for estimating purposes only. All dimensions not in brackets are in inches unless otherwise specified.
2. Dimensions in brackets are in millimeters unless otherwise specified.
3. $\mathrm{DR}=$ Dimension Ratio
4. AWWA and CSA Pressure Class @ $73^{\circ} \mathrm{F}\left[23^{\circ} \mathrm{C}\right]$ which includes a $2: 1$ safety factor.
5. Internal diameter calculated using nominal outside diameter and minimum wall thickness.
6. Dimension given for Approx. Bell Diameter (BD) is for highest pressure class.
7. For bell depths and insertion marks shown as $x x / x x$, this represents bell depths and insertion marks for pipe made in Woodbridge, ON/Abbotsford, BC
